Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 549093
Title Iron-polyphenol complexes cause blackening upon grinding Hermetia illucens (black soldier fly) larvae
Author(s) Janssen, Renske H.; Canelli, Greta; Sanders, Mark G.; Bakx, Edwin J.; Lakemond, Catriona M.M.; Fogliano, Vincenzo; Vincken, Jean Paul
Source Scientific Reports 9 (2019). - ISSN 2045-2322
Department(s) Food Chemistry
Food Quality and Design
Publication type Refereed Article in a scientific journal
Publication year 2019

Insects are a promising alternative protein source. One of the bottlenecks in applying insects in food is the fast darkening initiated during grinding. Besides enzymatic browning, non-enzymatic factors can cause off-colour formation, which differs between species. This study investigates the impact of iron, phenoloxidase, and polyphenols on off-colour formation in insect larvae. Hermetia illucens showed a blackish colour, whereas Tenebrio molitor turned brown and Alphitobius diaperinus remained the lightest. This off-colour formation appeared correlated with the iron content in the larvae, which was 61 ± 9.71, 54 ± 1.72 and 221 ± 6.07 mg/kg dw for T. molitor, A. diaperinus and H. illucens, respectively. In model systems, the formation of iron-L-3,4-dihydroxyphenylalanine (L-DOPA) bis- and tris-complexes were evidenced by direct injection into ESI-TOF-MS, based on their charges combined with iron isotope patterns. The reversibility of the binding of iron to phenolics, and thereby loss of blackening, was confirmed by EDTA addition. Besides complex formation, oxidation of L-DOPA by redox reactions with iron occurred mainly at low pH, whereas auto-oxidation of L-DOPA mainly occurred at pH 10. Tyrosinase (i.e. phenoloxidase) activity did not change complex formation. The similarity in off-colour formation between the model system and insects indicated an important role for iron-phenolic complexation in blackening.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.