Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 549129
Title Soil bacterial community structure and functional responses across a long-term mineral phosphorus (Pi) fertilisation gradient differ in grazed and cut grasslands
Author(s) Randall, Kate; Brennan, Fiona; Clipson, Nicholas; Creamer, Rachel; Griffiths, Bryan; Storey, Sean; Doyle, Evelyn
Source Applied Soil Ecology 138 (2019). - ISSN 0929-1393 - p. 134 - 143.
DOI https://doi.org/10.1016/j.apsoil.2019.02.002
Department(s) PE&RC
Soil Biology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Agricultural management - Bacteria - Grassland - Phosphorus - Soil
Abstract Grasslands form a significant proportion of land used across the globe and future management is important. The objective of this study was to compare the long-term impact of inorganic phosphorus (Pi) fertilisation rates (P0, P15 and P30 ha−1 yr−1) under two grass management trials (grazed vs. cut and removed) on soil physicochemical properties, microbial biomass, phosphomonoesterase activity, bacterial community structure and abundance of a phosphorus (P) mineralising gene (phoD). Under grazing, microbial biomass and soil phosphorus concentrations (total and Pi) generally increased with Pi fertilisation rate, accompanied by significant differences in bacterial community structure between unfertilised (P0) and P30 soil. At the cut and removed site, although Pi was significantly greater in P30 soil, P concentrations (total and Pi) did not increase to the same extent as for grazing, with microbial biomass and bacterial community structures unresponsive to Pi fertilisation. Despite differences in soil P concentrations (total and Pi) and microbial biomass between sites, the abundance of bacterial phoD increased with increasing soil Pi across both sites, while phosphomonoesterase activity decreased. Amplicon sequencing revealed Acidobacteria were the dominant bacterial phylum across both grasslands, but significant differences in relative abundances of bacterial genera were detected at the grazed site only. The bacterial genera Gp6 and Gp16 increased significantly with Pi fertilisation under grazing. Conversely, Bradyrhizobium as well as unclassified genus-type groups belonging to Actinobacteria and Acidimicrobiales significantly decreased with Pi fertilisation, suggesting potential roles in P mobilisation when soil Pi concentrations are low. This study highlights the importance of long-term Pi fertilisation rates and aboveground vegetation removal in shaping soil bacterial community structure and microbial biomass, which in turn may impact soil fertility and plant productivity within agricultural soils.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.