Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 549158
Title SegOptim—A new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data
Author(s) Gonçalves, João; Pôças, Isabel; Marcos, Bruno; Mücher, C.A.; Honrado, João P.
Source International Journal of applied Earth Observation and Geoinformation 76 (2019). - ISSN 1569-8432 - p. 218 - 230.
Department(s) Earth Observation and Environmental Informatics
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Genetic algorithms - GEOBIA - Geographic object-based image analysis - High-spatial resolution - Image segmentation - Open-source software - Optimization - R package - Supervised classification

Geographic Object-based Image Analysis (GEOBIA) is increasingly used to process high-spatial resolution imagery, with applications ranging from single species detection to habitat and land cover mapping. Image segmentation plays a key role in GEOBIA workflows, allowing to partition images into homogenous and mutually exclusive regions. Nonetheless, segmentation techniques require a robust parameterization to achieve the best results. Frequently, inappropriate parameterization leads to sub-optimal results and difficulties in comparing distinct methods. Here, we present an approach based on Genetic Algorithms (GA) to optimize image segmentation parameters by using the performance scores from object-based classification, thus allowing to assess the adequacy of a segmented image in relation to the classification problem. This approach was implemented in a new R package called SegOptim, in which several segmentation algorithms are interfaced, mostly from open-source software (GRASS GIS, Orfeo Toolbox, RSGISLib, SAGA GIS, TerraLib), but also from proprietary software (ESRI ArcGIS). SegOptim also provides access to several machine-learning classification algorithms currently available in R, including Gradient Boosted Modelling, Support Vector Machines, and Random Forest. We tested our approach using very-high to high spatial resolution images collected from an Unmanned Aerial Vehicle (0.03 – 0.10 m), WorldView-2 (2 m), RapidEye (5 m) and Sentinel-2 (10 – 20 m) in six different test sites located in northern Portugal with varying environmental conditions and for different purposes, including invasive species detection and land cover mapping. The results highlight the added value of our novel comparison of image segmentation and classification algorithms. Overall classification performances (assessed through cross-validation with the Kappa index) ranged from 0.85 to 1.00. Pilot-tests show that our GA-based approach is capable of providing sound results for optimizing the parameters of different segmentation algorithms, with benefits for classification accuracy and for comparison across techniques. We also verified that no particular combination of an image segmentation and a classification algorithm is suited for all the tasks/objectives. Consequently, it is crucial to compare and optimize available methods to understand which one is more suited for a certain objective. Our approach allows a closer integration between the segmentation and classification stages, which is of high importance for GEOBIA workflows. The results from our tests confirm that this integration has benefits for comparing and optimizing both processes. We discuss some limitations of the SegOptim approach (and potential solutions) as well as a future roadmap to expand its current functionalities.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.