Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 549292
Title Temporal stability of Orbicella annularis symbioses: a case study in The Bahamas
Author(s) Kennedy, E.V.; Tonk, Linda; Foster, N.L.; Mumby, P.J.; Stevens, J.R.
Source Bulletin of Marine Science 95 (2019)2. - ISSN 0007-4977 - p. 289 - 304.
DOI https://doi.org/10.5343/bms.2018.0064
Department(s) Onderz. Form. I.
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract Orbicella annularis (Ellis and Solander, 1786), a key reef building species, is unusual among Caribbean corals in the flexibility it displays in its symbioses with dinoflagellates in the family Symbiodiniaceae. This variability has been documented at a range of spatial scales; from within and between colonies to scales spanning the entire species range. However, temporal variability in Symbiodiniaceae communities found within O. annularis colonies is not well understood. Evidence suggests that symbiont communities in this coral species fluctuate temporally in response to environmental stressors (sporadic changes in abundance and in community composition). In this study, we investigated temporal stability of symbiont communities in O. annularis at four sites in The Bahamas over a period spanning 6 yrs. While the dominant symbiont species, Breviolum minutum (LaJeunesse et al.) J.E.Parkinson & LaJeunesse (formerly ITS2-type B1), remained stable across four patch-reef study sites, finer resolution molecular techniques revealed inter-annual variability in the presence/ absence of cryptic species Durusdinium trenchii (LaJeunesse) LaJeunesse (formerly ITS2-type D1a). Durusdinium trenchii is known to play a role in resistance to environmental stress and may have a protective effect under warm conditions. These results suggest that, while it might take an extreme environmental perturbation to trigger a long-term shift in the dominant symbiont, at background levels, less prevalent symbiont taxa are likely to be continually shuffling their relative abundances as they change in response to seasonal or environmental changes.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.