Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 549311
Title Potential of novel desert microalgae and cyanobacteria for commercial applications and CO2 sequestration
Author(s) Schipper, Kira; Muraikhi, Mariam Al; Alghasal, Ghamza Saed H.S.; Saadaoui, Imen; Bounnit, Touria; Rasheed, Rihab; Dalgamouni, Tasneem; Jabri, Hareb Mohammed S.J. Al; Wijffels, René H.; Barbosa, Maria J.
Source Journal of Applied Phycology 31 (2019)4. - ISSN 0921-8971 - p. 2231 - 2243.
DOI https://doi.org/10.1007/s10811-019-01763-3
Department(s) Bioprocess Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Carbon capture - CO - Cyanobacteria - Microalgae - Thermotolerance
Abstract CO2 fixation by phototrophic microalgae and cyanobacteria is seen as a possible global carbon emissions reducer; however, novel microalgae and cyanobacterial strains with tolerance to elevated temperatures and CO2 concentrations are essential for further development of algae-based carbon capture. Four novel strains isolated from the Arabian Gulf were investigated for their thermotolerance and CO2-tolerance, as well as their carbon capture capability. Two strains, Leptolyngbya sp. and Picochlorum sp., grew well at 40 °C, with productivities of 106.6 ± 10.0 and 87.5 ± 2.1 mg biomass L−1 d−1, respectively. Tetraselmis sp. isolate showed the highest biomass productivity and carbon capture rate of 157.7 ± 10.3 mg biomass L−1 d−1 and 270.8 ± 23.9 mg CO2 L−1 d−1, respectively, both at 30 °C. Under 20% CO2, the biomass productivity increased over 2-fold for both Tetraselmis and Picochlorum isolates, to 333.8 ± 41.1 and 244.7 ± 29.5 mg biomass L−1 d−1. These two isolates also presented significant amounts of lipids, up to 25.6 ± 0.9% and 28.0 ± 2.0% (w/w), as well as presence of EPA and DHA. Picochlorum sp. was found to have a suitable FAME profile for biodiesel production. Both Tetraselmis and Picochlorum isolates showed promising characteristics, making them valuable strains for further investigation towards commercial applications and CO2 capture.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.