Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 549640
Title Performance of laser-based electronic devices for structural analysis of Amazonian terra-firme forests
Author(s) Pereira, Iokanam Sales; Mendonça do Nascimento, Henrique E.; Vicari, Matheus Boni; Disney, Mathias; DeLucia, Evan H.; Domingues, Tomas; Kruijt, Bart; Lapola, David; Meir, Patrick; Norby, Richard J.; Ometto, Jean P.H.B.; Quesada, Carlos A.; Rammig, Anja; Hofhansl, Florian
Source Remote Sensing 11 (2019)5. - ISSN 2072-4292
DOI https://doi.org/10.3390/rs11050510
Department(s) Water Systems and Global Change
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Carbon storage - Central-eastern Amazonia - Forest structure - Light detection and ranging (LiDAR) - Terra-firme forest - Terrestrial laser scanning
Abstract

Tropical vegetation biomass represents a key component of the carbon stored in global forest ecosystems. Estimates of aboveground biomass commonly rely on measurements of tree size (diameter and height) and then indirectly relate, via allometric relationships and wood density, to biomass sampled from a relatively small number of harvested and weighed trees. Recently, however, novel in situ remote sensing techniques have been proposed, which may provide nondestructive alternative approaches to derive biomass estimates. Nonetheless, we still lack knowledge of the measurement uncertainties, as both the calibration and validation of estimates using different techniques and instruments requires consistent assessment of the underlying errors. To that end, we investigate different approaches estimating the tropical aboveground biomass in situ. We quantify the total and systematic errors among measurements obtained from terrestrial light detection and ranging (LiDAR), hypsometer-based trigonometry, and traditional forest inventory. We show that laser-based estimates of aboveground biomass are in good agreement (< 10% measurement uncertainty) with traditional measurements. However, relative uncertainties vary among the allometric equations based on the vegetation parameters used for parameterization. We report the error metrics for measurements of tree diameter and tree height and discuss the consequences for estimated biomass. Despite methodological differences detected in this study, we conclude that laser-based electronic devices could complement conventional measurement techniques, thereby potentially improving estimates of tropical vegetation biomass.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.