Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 549975
Title Bioreactors for succinic acid production processes
Author(s) Ferone, Mariateresa; Raganati, Francesca; Olivieri, Giuseppe; Marzocchella, Antonio
Source Critical Reviews in Biotechnology 39 (2019)4. - ISSN 0738-8551 - p. 571 - 586.
DOI https://doi.org/10.1080/07388551.2019.1592105
Department(s) Bioprocess Engineering
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) batch and continuous process - bioreactor - biorefinery - fermentation - Succinic acid
Abstract

Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. Fermentation SA production from renewable carbohydrate feedstocks can have the economic and sustainability potential to replace petroleum-based production in the future, not only for existing markets, but also for new larger volume markets. Design and operation of bio-reactors play a key role. During the last 20 years, many different fermentation strategies for SA production have been described in literature, including utilization of immobilized biocatalysts, integrated fermentation and separation systems and batch, fed-batch, and continuous operation modes. This review is an overview of different fermentation process design developed over the past decade and provides a perspective on remaining challenges for an economically feasible succinate production processes. The analysis stresses the idea of improving the efficiency of the fermentation stage by improving bioreactor design and by increasing bioreactor performance.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.