Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 550110
Title Understanding major NOM properties controlling its interactions with phosphorus and arsenic at goethite-water interface
Author(s) Deng, Yingxuan; Weng, Liping; Li, Yongtao; Ma, Jie; Chen, Yali
Source Water Research 157 (2019). - ISSN 0043-1354 - p. 372 - 380.
DOI https://doi.org/10.1016/j.watres.2019.03.077
Department(s) WIMEK
Soil Chemistry and Chemical Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Adsorption - Arsenate - Arsenite - Natural organic matter - Phosphate - Surface complexation model
Abstract

Among natural organic matter (NOM), oxyanions and metal (hydr)oxides, a complicated interaction exists in natural aquatic and terrestrial systems and in waste waters. Effects of seven types of NOM (four humic acids (HA), three fulvic acids (FA)) that vary in properties on the adsorption of oxyanions, including phosphate, arsenate and arsenite, at goethite-water interface were quantitatively studied. Results show that the adsorption of oxyanions to goethite is decreased by the presence of NOM, especially for phosphate and arsenate at low pH. In general, the effects of the three FA are similar, which are more effective than HA in reducing oxyanion adsorption at low pH (<6). Differences were observed between the four HA in their competition with oxyanions. The adsorption of phosphate, arsenate and arsenite in the presence of NOM are well described with both the NOM-CD (CD: Charge Distribution) and LCD (Ligand and Charge Distribution) model. The NOM-CD model is relatively simple to use, whereas the LCD model can better reveal different factors in the interaction, including the spatial distribution of adsorbed NOM on oxide surface. According to these two models: site density of carboxylic groups, protonation constant of carboxylic groups, and particle size of NOM are major properties of NOM determining its effect on oxyanion adsorption to oxides. At relatively low loadings, morphological change of adsorbed NOM takes place, and the degree of morphological change of adsorbed NOM depends on the particle size, site density of carboxylic groups and aromaticity of NOM. The influence of particle size on the interaction becomes more important at higher NOM loadings. The results suggested that the fixation or removal efficiency of phosphate, arsenate and arsenite with iron oxides (e.g. goethite) can be significantly decreased by the presence of NOM, especially when NOM rich in acidic and aromatic groups.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.