Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 550829
Title Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations
Author(s) Ger, Kemal Ali; Naus-Wiezer, Suzanne; Meester, Luc De; Lürling, Miquel
Source Limnology and Oceanography 64 (2019)3. - ISSN 0024-3590 - p. 1214 - 1227.
DOI https://doi.org/10.1002/lno.11108
Department(s) WIMEK
Aquatic Ecology and Water Quality Management
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract

How grazer selectivity regulates the primary producer community is a core topic in ecology. Yet, the role of zooplankton grazing selection on phytoplankton dynamics is poorly understood. Few studies have compared the effect of grazers with contrasting selectivity on mixed phytoplankton prey, and none over multiple phytoplankton generations. We tested the hypothesis that a selectively grazing copepod (Eudiaptomus gracilis) would facilitate the dominance of a toxic cyanobacterium (Microcystis aeruginosa) by grazing on a competing eukaryotic microalga (Cryptomonas pyrenoidifera), while a generalist cladoceran (Daphnia magna) would have no effect on the dominance of cyanobacteria in 4-d laboratory cocultures. Experiments started with a ninefold initial dominance of Cryptomonas over Microcystis by biomass. Each grazer type was added to cocultured phytoplankton and the abundance of phytoplankton was compared to no-grazer controls. As predicted, Daphnia had no effect on the relative abundance of its prey and the copepod facilitated Microcystis dominance, although the strength of facilitation slightly declined with time. As the copepod reduced mostly the biomass of the edible algae, it pushed the system toward the dominance of toxic prey, which likely reduced the efficiency of selective grazing on the last day. Hence, while the selective grazer promoted cyanobacterial dominance, the effect may be weaker than predicted from extrapolating grazing rates obtained from short-term (i.e., hourly) assays. Overall, predicting the role of zooplankton selectivity on phytoplankton dynamics—especially harmful algal blooms—would benefit from accounting for fluctuations in grazer effects due to shifting abundance and growth of each prey over time.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.