Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 550995
Title The efficiency of a low dose of biochar in enhancing the aromaticity of humic-like substance extracted from poultry manure compost
Author(s) Jindo, Keiji; Sánchez-Monedero, Miguel A.; Matsumoto, Kazuhiro; Sonoki, Tomonori
Source Agronomy 9 (2019)5. - ISSN 2073-4395
DOI https://doi.org/10.3390/agronomy9050248
Department(s) Plant Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Biochar - Composting - Humification - NMR - Pyrolysis
Abstract

Using biochar as a bulking agent in composting is gradually becoming popular for the minimization of nitrogen losses during the process and the improvement in compost quality. While a wide range of different biochar doses is applied, not much clear information was available about the optimum ratio. This study presents the impact of adding a low dose (2% v/v) of slow-pyrolysis oak biochar (Quercus serrate Murray), into poultry manure on the recalcitrant characteristic of humified organic matter. The influence in the chemical composition of humic-like substance was evaluated in poultry manure compost prepared with (PM+B) and without biochar (PM). The shift to slightly more stable chemical composition was shown in humic acid-like (HA) and fulvic acid-like (FA) extracted from PM+B compost, by increasing the proportion of aromatic carbon groups and thermal stability measured by thermogravimetry. We conclude that the addition of 2% biochar moderately enhances the recalcitrance of humified organic carbon and this could be feasible for the implementation of the biochar use in composting since only a small amount is required.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.