Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 551030
Title Multimodal Tracking of Controlled Staphylococcus aureus Infections in Mice
Author(s) Welling, Mick M.; Korne, Clarize M. De; Spa, Silvia J.; Willigen, Danny M. Van; Hensbergen, Albertus W.; Bunschoten, Anton; Duszenko, Nikolas; Smits, Wiep Klaas; Roestenberg, Meta; Leeuwen, Fijs W.B. Van
Source Bmc Infectious Diseases 5 (2019)7. - ISSN 1471-2334 - p. 1160 - 1168.
DOI https://doi.org/10.1021/acsinfecdis.9b00015
Department(s) BioNanoTechnology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) bacterial infection - cell-tracking - fluorescence - multimodal - SPECT - ubiquicidin
Abstract

There is a need to develop diagnostic and analytical tools that allow noninvasive monitoring of bacterial growth and dissemination in vivo. For such cell-tracking studies to hold translational value to controlled human infections, in which volunteers are experimentally colonized, they should not require genetic modification, and they should allow tracking over a number of replication cycles. To gauge if an antimicrobial peptide tracer, 99m Tc-UBI 29-41 -Cy5, which contains both a fluorescent and a radioactive moiety, could be used for such in vivo bacterial tracking, we performed longitudinal imaging of a thigh-muscle infection with 99m Tc-UBI 29-41 -Cy5-labeled Staphylococcus aureus. Mice were imaged using SPECT and fluorescence-imaging modalities at various intervals during a 28 h period. Biodistribution analyses were performed to quantitate radioactivity in the abscess and other tissues. SPECT and fluorescence imaging in mice showed clear retention of the 99m Tc-UBI 29-41 -Cy5-labeled bacteria following inoculation in the thigh muscle. Despite bacterial replication, the signal intensity in the abscess only modestly decreased within a 28 h period: 52% of the total injected radioactivity per gram of tissue (%ID/g) at 4 h postinfection (pi) versus 44%ID/g at 28 h pi (15% decrease). After inoculation, a portion of the bacteria disseminated from the abscess, and S. aureus cultures were obtained from radioactive urine samples. Bacterial staining with 99m Tc-UBI 29-41 -Cy5 allowed noninvasive bacterial-cell tracking during a 28 h period. Given the versatility of the presented bacterial-tracking method, we believe that this concept could pave the way for precise imaging capabilities during controlled-human-infection studies.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.