Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 551758
Title Shallow Cumulus Representation and Its Interaction with Radiation and Surface at the Convection Gray Zone
Author(s) Pedruzo-Bagazgoitia, Xabier; Jiménez, Pedro A.; Dudhia, Jimy; Vilà-Guerau De Arellano, Jordi
Source Monthly Weather Review 147 (2019)7. - ISSN 0027-0644 - p. 2467 - 2483.
DOI https://doi.org/10.1175/MWR-D-19-0030.1
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract This study presents a systematic analysis of convective parameterizations performance with interactive radiation, microphysics, and surface on an idealized day with shallow convection. To this end, we analyze a suite of mesoscale numerical experiments (i.e., with parameterized turbulence). In the first set, two different convection schemes represent shallow convection at a 9-km resolution. These experiments are then compared with model results omitting convective parameterizations at 9- and 3-km horizontal resolution (gray zone). Relevant in our approach is to compare the results against two simulations by different large-eddy simulation (LES) models. Results show that the mesoscale experiments, including the 3-km resolution, are unable to adequately represent the timing, intensity, height, and extension of the shallow cumulus field. The main differences with LES experiments are the following: a too late onset, too high cloud base, and a too early transport of moisture too high, overestimating the second cloud layer. Related to this, both convective parameterizations produce warm and dry biases of up to 2 K and 2 g kg−1, respectively, in the cloud layer. This misrepresentation of the cloud dynamics leads to overestimated shortwave radiation variability, both spacewise and timewise. Domain-averaged shortwave radiation at the surface, however, compares satisfactorily with LES. The shortwave direct and diffuse partition is misrepresented by the convective parameterizations with an underestimation (overestimation) of diffuse (direct) radiation both locally and, by a relative 40% (10%), of the domain average.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.