Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 551786
Title Exploring the treasure of plant molecules with integrated biorefineries
Author(s) Torres, Andres F.; Xu, Xuan; Nikiforidis, Constantinos V.; Bitter, Johannes H.; Trindade, Luisa M.
Source Frontiers in Plant Science 10 (2019). - ISSN 1664-462X
Department(s) Plant Breeding
Biobased Chemistry and Technology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Biobased economy - Biomass deconstruction - Biorefinery - Cross-disciplinary - Plant breeding - Plant compounds - Process technology

Despite significant progress toward the commercialization of biobased products, today’s biorefineries are far from achieving their intended goal of total biomass valorization and effective product diversification. The problem is conceptual. Modern biorefineries were built around well-optimized, cost-effective chemical synthesis routes, like those used in petroleum refineries for the synthesis of fuels, plastics, and solvents. However, these were designed for the conversion of fossil resources and are far from optimal for the processing of biomass, which has unique chemical characteristics. Accordingly, existing biomass commodities were never intended for modern biorefineries as they were bred to meet the needs of conventional agriculture. In this perspective paper, we propose a new path toward the design of efficient biorefineries, which capitalizes on a cross-disciplinary synergy between plant, physical, and catalysis science. In our view, the best opportunity to advance profitable and sustainable biorefineries requires the parallel development of novel feedstocks, conversion protocols and synthesis routes specifically tailored for total biomass valorization. Above all, we believe that plant biologists and process technologists can jointly explore the natural diversity of plants to synchronously develop both, biobased crops with designer chemistries and compatible conversion protocols that enable maximal biomass valorization with minimum input utilization. By building biorefineries from the bottom-up (i.e., starting with the crop), the envisioned partnership promises to develop cost-effective, biomass-dedicated routes which can be effectively scaled-up to deliver profitable and resource-use efficient biorefineries.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.