Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 551841
Title Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes
Author(s) Wang, Xu; Daigger, Glen; Vries, Wim de; Kroeze, Carolien; Yang, Min; Ren, Nan Qi; Liu, Junxin; Butler, David
Source Nature Communications 10 (2019)1. - ISSN 2041-1723
DOI https://doi.org/10.1038/s41467-019-10445-0
Department(s) Sustainable Soil Use
WIMEK
Water Systems and Global Change
Publication type Refereed Article in a scientific journal
Publication year 2019
Abstract

Reducing nutrient discharge from wastewater is essential to mitigating aquatic eutrophication; however, energy- and chemicals-intensive nutrient removal processes, accompanied with the emissions of airborne contaminants, can create other, unexpected, environmental consequences. Implementing mitigation strategies requires a complete understanding of the effects of nutrient control practices, given spatial and temporal variations. Here we simulate the environmental impacts of reducing nutrient discharge from domestic wastewater in 173 countries during 1990–2050. We find that improvements in wastewater infrastructure achieve a large-scale decline in nutrient input to surface waters, but this is causing detrimental effects on the atmosphere and the broader environment. Population size and dietary protein intake have the most significant effects over all the impacts arising from reduction of wastewater nutrients. Wastewater-related impact hotspots are also shifting from Asia to Africa, suggesting a need for interventions in such countries, mostly with growing populations, rising dietary intake, rapid urbanisation, and inadequate sanitation.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.