Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 551883
Title Effects of iron, calcium, and organic matter on phosphorus behavior in fluvo-aquic soil: farmland investigation and aging experiments
Author(s) Ma, Yuling; Ma, Jie; Peng, Hao; Weng, Liping; Chen, Yali; Li, Yongtao
Source Journal of Soils and Sediments (2019). - ISSN 1439-0108
DOI https://doi.org/10.1007/s11368-019-02354-y
Department(s) WIMEK
Soil Chemistry and Chemical Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Calcium carbonate - Fe mineral - Fluvo-aquic soil - Organic fertilizer - Phosphorus fractions - Phosphorus immobilization
Abstract

Purpose: Excessive fertilization has led to a high risk of phosphorus (P) leaching and related problems in the North China Plain, where the most typical cropland soil is fluvo-aquic soil. The main factors controlling environmental P behavior and the acting time sequence of these factors in soil after long-term P fertilizer application have not been well recognized. A clear understanding is essential for effective P management. Materials and methods: Effects of Fe minerals, calcium carbonate, and organic matter (OM) on P immobilization in fluvo-aquic soil were studied systematically through farmland investigation and aging experiments. Results and discussion: Phosphorus associated with Ca was the primary fraction in fluvo-aquic soil. Even though there was no significant correlation between the total contents of P and Ca in soils, formation of P-Ca phases facilitated by Ca2+ in soil solution was a mechanism of P retention when soil received excess P fertilizer. Positive correlations between the contents of P and Fe and total organic carbon (TOC) indicate that Fe minerals and OM have significant effects on P immobilization. Through the aging experiments, P was found to primarily adsorb on goethite and gradually forms Ca-P compounds. Organic fertilizer caused P release and inhibition of P adsorption in the initial stages; however, OM derived from organic fertilizer might facilitate P immobilization in the long term through the formation of a P-Ca-OM complex. Conclusions: Although superfluous application of P fertilizers leads to the gradual formation of Ca-P in fluvo-aquic soils, there is still a risk of P loss because P is not immediately adsorbed by Fe minerals. Moreover, application of organic fertilizers increases the risk of P loss. These results provide an important scientific basis for initiating P management policies for fluvo-aquic soils.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.