Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 552030
Title Robotic-cell scheduling with pick-up constraints and uncertain processing times
Author(s) Tonke, Daniel; Grunow, Martin; Akkerman, Renzo
Source IISE Transactions 51 (2019)11. - ISSN 2472-5854 - p. 1217 - 1235.
DOI https://doi.org/10.1080/24725854.2018.1555727
Department(s) Operations Research and Logistics
WASS
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) automated manufacturing equipment - cyclic scheduling - optimization - Robotic-cell scheduling - uncertainty
Abstract

Technological developments have propelled the deployment of robots in many applications, which has led to the trend to integrate an increasing number of uncertain processes into robotic and automated equipment. We contribute to this domain by considering the scheduling of a dual-gripper robotic cell. For systems with one potential bottleneck, we determine conditions under which the widely used swap sequence does not guarantee optimality or even feasibility and prove that optimal schedules can be derived under certain conditions when building on two types of slack we introduce. With the addition of a third type of slack and the concept of fixed partial schedules, we develop an offline-online scheduling approach that, in contrast with previous work, is able to deal with uncertainty in all process steps and robot handling tasks, even under pick-up constraints. The approach can deal with single- or multiple-bottleneck systems, and is the first approach that is not restricted to a single predefined sequence such as the swap sequence. Our approach is well suited for real-world applications, since it generates cyclic schedules and allows integration into commonly-used frameworks for robotic-cell scheduling and control. We demonstrate the applicability of our approach to cluster tools in semiconductor manufacturing, showing that our approach generates feasible results for all tested levels of uncertainty and optimal or near-optimal results for low levels of uncertainty. With additional symmetry-breaking constraints, the model can be efficiently applied to industrial-scale test instances. We show that reducing uncertainty to below 10% of the processing time would yield significantly improved cycle lengths and throughput. We also demonstrate that the widely used swap sequence only finds solutions for less than 1% of the instances when strict pick-up constraints are enforced and processing times are heterogeneous. As our approach finds feasible solutions to all of these instances, it enables the application of robotic cells to a significantly broader application environment.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.