Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 552065
Title Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil
Author(s) Lefebvre, David; Goglio, Pietro; Williams, Adrian; Manning, David A.C.; Azevedo, Antonio Carlos de; Bergmann, Magda; Meersmans, Jeroen; Smith, Pete
Source Journal of Cleaner Production 233 (2019). - ISSN 0959-6526 - p. 468 - 481.
DOI https://doi.org/10.1016/j.jclepro.2019.06.099
Department(s) Performance and Impact Agrosectors
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Carbonation - Enhanced weathering - LCA - Life cycle assessment - NET - Sao paulo
Abstract

Enhanced silicate rock weathering for long-term carbon dioxide sequestration has considerable potential, but depends on the availability of suitable rocks coupled with proximity to suitable locations for field application. In this paper, we investigate the established mining industry that extracts basaltic rocks for construction from the Paraná Basin, Sao Paulo State, Brazil. Through a Life Cycle Assessment, we determine the balance of carbon dioxide emissions involved in the use of this material, the relative contribution of soil carbonation and enhanced weathering, and the potential carbon dioxide removal of Sao Paulo agricultural land through enhanced weathering of basalt rock. Our results show that enhanced weathering and carbonation respectively emit around 75 and 135 kg carbon dioxide equivalent per tonne of carbon dioxide equivalent removed (considering a quarry to field distance of 65 km). We underline transportation as the principal process negatively affecting the practice and uncover a limiting road travel distance from the quarry to the field of 540 ± 65 km for carbonation and 990 ± 116 km for enhanced weathering, above which the emissions offset the potential capture. Regarding Sao Paulo State, the application of crushed basalt at 1 t/ha to all of the State's 12 million hectares of agricultural land could capture around 1.3 to 2.4 Mt carbon dioxide equivalent through carbonation and enhanced weathering, respectively. This study suggests a lower sequestration estimate than previous studies and emphasizes the need to consider all process stages through a Life Cycle Assessment methodology, to provide more reliable estimates of the sequestration potential of greenhouse gas removal technologies.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.