Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 553039
Title Comparative Analysis of Photocatalytic and Electrochemical Degradation of 4-Ethylphenol in Saline Conditions
Author(s) Brüninghoff, Robert; Duijne, Alyssa K. Van; Braakhuis, Lucas; Saha, Pradip; Jeremiasse, Adriaan W.; Mei, Bastian; Mul, Guido
Source Environmental Science and Technology 53 (2019)15. - ISSN 0013-936X - p. 8725 - 9735.
Department(s) Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2019

We evaluated electrochemical degradation (ECD) and photocatalytic degradation (PCD) technologies for saline water purification, with a focus on rate comparison and formation and degradation of chlorinated aromatic intermediates using the same non-chlorinated parent compound, 4-ethylphenol (4EP). At 15 mA·cm-2, and in the absence of chloride (0.6 mol·L-1 NaNO3 was used as supporting electrolyte), ECD resulted in an apparent zero-order rate of 30 μmol L-1·h-1, whereas rates of ?300 μmol L-1·h-1 and ?3750 μmol L-1·h-1 were computed for low (0.03 mol·L-1) and high (0.6 mol·L-1) NaCl concentration, respectively. For PCD, initial rates of ?330 μmol L-1·h-1 and 205 μmol L-1·h-1 were found for low and high NaCl concentrations, at a photocatalyst (TiO2) concentration of 0.5 g·L-1, and illumination at λmax ≈ 375 nm, with an intensity ?0.32 mW·cm-2. In the chlorine mediated ECD approach, significant quantities of free chlorine (hypochlorite, Cl2) and chlorinated hydrocarbons were formed in solution, while photocatalytic degradation did not show the formation of free chlorine, nor chlorine-containing intermediates, and resulted in better removal of non-purgeable hydrocarbons than ECD. The origin of the minimal formation of free chlorine and chlorinated compounds in photocatalytic degradation is discussed based on photoelectrochemical results and existing literature, and explained by a chloride-mediated surface-charge recombination mechanism.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.