Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 553208
Title Sampling design optimization for soil mapping with random forest
Author(s) Wadoux, Alexandre M.J.C.; Brus, Dick J.; Heuvelink, Gerard B.M.
Source Geoderma 355 (2019). - ISSN 0016-7061
Department(s) Soil Geography and Landscape
Mathematical and Statistical Methods - Biometris
ISRIC - World Soil Information
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Conditioned Latin Hypercube - k-means - LUCAS - Optimal design - Pedometrics - Random forest - Spatial coverage - Spatial simulated annealing - Uncertainty assessment

Machine learning techniques are widely employed to generate digital soil maps. The map accuracy is partly determined by the number and spatial locations of the measurements used to calibrate the machine learning model. However, determining the optimal sampling design for mapping with machine learning techniques has not yet been considered in detail in digital soil mapping studies. In this paper, we investigate sampling design optimization for soil mapping with random forest. A design is optimized using spatial simulated annealing by minimizing the mean squared prediction error (MSE). We applied this approach to mapping soil organic carbon for a part of Europe using subsamples of the LUCAS dataset. The optimized subsamples are used as input for the random forest machine learning model, using a large set of readily available environmental data as covariates. We also predicted the same soil property using subsamples selected by simple random sampling, conditioned Latin Hypercube sampling (cLHS), spatial coverage sampling and feature space coverage sampling. Distributions of the estimated population MSEs are obtained through repeated random splitting of the LUCAS dataset, serving as the population of interest, into subsets used for validation, testing and selection of calibration samples, and repeated selection of calibration samples with the various sampling designs. The differences between the medians of the MSE distributions were tested for significance using the non-parametric Mann-Whitney test. The process was repeated for different sample sizes. We also analyzed the spread of the optimized designs in both geographic and feature space to reveal their characteristics. Results show that optimization of the sampling design by minimizing the MSE is worthwhile for small sample sizes. However, an important disadvantage of sampling design optimization using MSE is that it requires known values of the soil property at all locations and as a consequence is only feasible for subsampling an existing dataset. For larger sample sizes, the effect of using an MSE optimized design diminishes. In this case, we recommend to use a sample spread uniformly in the feature (i.e. covariate) space of the most important random forest covariates. The results also show that for our case study, cLHS sampling performs worse than the other sampling designs for mapping with random forest. We stress that comparison of sampling designs for calibration by splitting the data just once is very sensitive to the data split that one happens to use if the validation set is small.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.