Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 553317
Title Model-based geostatistics from a Bayesian perspective: Investigating area-to-point kriging with small datasets
Author(s) Steinbuch, L.; Orton, Thomas; Brus, D.J.
Event Wageningen Soil Conference, Wageningen, 2019-08-27/2019-08-30
Department(s) Soil Geography and Landscape
Mathematical and Statistical Methods - Biometris
PE&RC
Publication type Poster (scientific)
Publication year 2019
Abstract Area-to-point kriging (ATPK) is a geostatistical method for creating raster maps of high resolution using data of the variable ofinterest of much lower resolution. The dataset of areal means is often considerably smaller than the size of dataset conventionallydealt with in geostatistical analyses. In contemporary ATPK methods, uncertainty in the variogram parameters is not accounted forin the prediction; this issue can be overcome by applying ATPK in a Bayesian framework. Commonly in Bayesian statistics,posterior distributions of model parameters and posterior predictive distributions are approximated by Markov chain Monte Carlosampling from the posterior, which can be computationally expensive. We therefore implemented a partly analytical solution. Weused this implementation to (i) explore the impact of the prior distribution on predictions and prediction variances, (ii) investigatewhether certain aspects of uncertainty can be disregarded, simplifying the necessary computations, and (iii) test the impact ofvarious model misspecifications. We compared several approaches using simulated data, real-world point data that we aggregatedourselves, and a case study on aggregated crop yields in Burkina Faso. We found the prior distribution to have minimal impact onthe disaggregated predictions.We found that in most cases with known short-range behaviour, an approach that disregardeduncertainty in the variogram range parameter gave a reasonable assessment of prediction uncertainty. However, we found somesevere effects of model misspecification in terms of overly conservative or optimistic prediction uncertainties, highlighting the importance of model choice or integration in ATPK.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.