Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
Record number 553412
Title Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level
Author(s) Marchetti, Margherita; Kamsma, Douwe; Cazares Vargas, Ernesto; Hernandez García, Armando; Schoot, Paul van der; Vries, Renko de; Wuite, Gijs J.L.; Roos, Wouter H.
Source Nano Letters 19 (2019)8. - ISSN 1530-6984 - p. 5746 - 5753.
Department(s) Physical Chemistry and Soft Matter
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) acoustic force spectroscopy - artificial virus - biophysics - optical tweezers - physical virology - Self-assembly

While the structure of a multitude of viral particles has been resolved to atomistic detail, their assembly pathways remain largely elusive. Key unresolved issues are particle nucleation, particle growth, and the mode of genome compaction. These issues are difficult to address in bulk approaches and are effectively only accessible by the real-time tracking of assembly dynamics of individual particles. This we do here by studying the assembly into rod-shaped viruslike particles (VLPs) of artificial capsid polypeptides. Using fluorescence optical tweezers, we establish that small oligomers perform one-dimensional diffusion along the DNA. Larger oligomers are immobile and nucleate VLP growth. A multiplexed acoustic force spectroscopy approach reveals that DNA is compacted in regular steps, suggesting packaging via helical wrapping into a nucleocapsid. By reporting how real-time assembly tracking elucidates viral nucleation and growth principles, our work opens the door to a fundamental understanding of the complex assembly pathways of both VLPs and naturally evolved viruses.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.