Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 553441
Title Hydrographic and Biological Survey of a Surface-Intensified Anticyclonic Eddy in the Caribbean Sea
Author(s) Boog, C.G. van der; Jong, M.F. de; Scheidat, M.; Leopold, M.F.; Geelhoed, S.C.V.; Schulz, K.; Dijkstra, H.A.; Pietrzak, J.D.; Katsman, C.A.
Source Journal of Geophysical Research: Oceans 124 (2019)8. - ISSN 2169-9275 - p. 6235 - 6251.
DOI https://doi.org/10.1029/2018JC014877
Department(s) Onderz. Form. I.
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) anticyclone - barrier layer - Caribbean Sea - ecology - hydrographic - thermohaline staircases
Abstract

In the Caribbean Sea, mesoscale anticyclonic ocean eddies impact the local ecosystem by mixing of low salinity river outflow with the nutrient-rich waters upwelling along the Venezuelan and Colombian coast. To gain insight into the physics and the ecological impact of these anticyclones, we performed a combined hydrographic and biological survey of one Caribbean anticyclone in February 2018. We found that the anticyclone had a radius of 90 km and was surface intensified with the strongest velocities (0.72 m/s) in the upper 150 m of the water column. Below, isopycnal displacements were found down to 700 dbar. The core of the anticyclone entrained waters from the Orinoco River plume and contained slightly elevated chlorophyll concentrations compared to the surroundings. At the edge of the anticyclone we observed higher densities of flying fish but not higher densities of predators like seabirds and cetaceans. Below the surface, a strong temperature inversion (0.98 °C) was present within a barrier layer. In addition, we found thermohaline staircases that originated from double diffusion processes within Tropical Atlantic Central Water.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.