Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 553508
Title Effects of stocking density and immersion time on the performance of oysters in intertidal off-bottom culture
Author(s) Capelle, Jacob J.; Hartog, Eva; Creemers, Jorik; Heringa, Jouke; Kamermans, Pauline
Source Aquaculture International (2019). - ISSN 0967-6120 - 16 p.
DOI https://doi.org/10.1007/s10499-019-00460-9
Department(s) Onderz. Form. D.
WIAS
Onderz. Form. I.
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Magallana gigas - Crassostrea gigas - Split-plot design - Density dependent - Trestle culture - Shellfish culture
Abstract Intertidal culture in meshed bags on trestles is worldwide the most established culture method for oysters. Culturists can affect oyster performance by adjusting stocking density and immersion time, and it can be expected that these factors are not independent. The combined effect of stocking density and immersion time on survival, growth and condition of oysters was investigated on a culture site, where oysters are usually stocked at 8 kg bag−1. Half-grown
oysters were stocked in three biomass densities: 4, 8 and 12 kg bag−1, nested within three immersion times (87%, 76% and 73% of tidal cycle). Chlorophyll-a concentration peaked in summer (~ 3–10 μg l−1) and was low in autumn (~ 1 μg l−1), and high chlorophyll-a levels coincided with oyster spawning period. Survival was not affected by density or immersion time. Shell growth per oyster and biomass production per bag were density dependent—higher at 4 than at 12 kg bag−1—but neither were different from 8 kg bag−1. Growth rates were
negativity related with immersion over the spawning period but showed a (non-significant) positive trend over other periods. At harvest, condition per oyster decreased with stocking density and increased with immersion. There was no interaction between density and immersion. Treatments had a more pronounced effect on meat content than on biomass production. Hence, oysters might be kept at higher stocking densities to increase biomass production during most of the growth cycle but restocked in lower densities, with longer immersion times
prior to harvest to maximize meat content at harvest.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.