Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 553610
Title Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models
Author(s) Douma, Jacob C.; Witte, Jan Philip M.; Aerts, Rien; Bartholomeus, Ruud P.; Ordoñez, Jenny C.; Venterink, Harry Olde; Wassen, Martin J.; Bodegom, Peter M. van
Source Ecography 35 (2012)4. - ISSN 0906-7590 - p. 294 - 305.
DOI https://doi.org/10.1111/j.1600-0587.2011.07140.x
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) vegetation types - geographical distribution - ecological modeling - prediction - traits - habitats - netherlands
Categories Plant Ecology
Abstract

Reliably predicting vegetation distribution requires habitat distribution models (HDMs) that are ecologically sound. Current correlative HDMs are increasingly criticized because they lack sufficient functional basis. To include functional information into these models, we integrated two concepts from community ecology into a new type of HDM. We incorporated: 1) species selection by their traits in which only those species that pass the environmental filter can be part of the community (assembly theory); 2) that the occurrence probability of a community is determined by the extent to which the community mean traits fit the required traits as set by the environment. In this paper, our trait-based HDM is presented and its predictive capacity explored. Our approach consists of two steps. In step 1, four plant traits (stem-specific density and indicator values for nutrients, moisture and acidity) are predicted from four dominant environmental drivers (disturbance, nutrient supply, moisture supply and acidity) using regression. In step 2, these traits are used to predict the occurrence probability of 13 vegetation types, covering the majority of vegetation types across the Netherlands. The model was validated by comparison to the observed vegetation type for 263 plots in the Netherlands. Model performance was within the range of conventional HDMs and decreased with increasing uncertainty in the environment-trait relationships and with an increasing number of vegetation types. This study shows that including functionality into HDMs is not necessarily at the cost of model performance, while it has several conceptual advantages among including an increased insight in the functional characteristics of the vegetation and sources of unpredictability in community assembly. As such it is a promising first step towards more functional HDMs. Further development of a trait-based HDM hinges on replacing indicator values by truly functional traits and the translation of these relationships into mechanistic relationships.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.