Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 554130
Title Influence of solution composition on fouling of anion exchange membranes desalinating polymer-flooding produced water
Author(s) Sosa-Fernandez, P.A.; Miedema, S.J.; Bruning, H.; Leermakers, F.A.M.; Rijnaarts, H.H.M.; Post, J.W.
Source Journal of Colloid and Interface Science 557 (2019). - ISSN 0021-9797 - p. 381 - 394.
DOI https://doi.org/10.1016/j.jcis.2019.09.029
Department(s) Environmental Technology
WIMEK
VLAG
Physical Chemistry and Soft Matter
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Concentration polarization - Crude oil - Electrodialysis - Gel layer - Membrane fouling - Partially hydrolyzed polyacrylamide - Polyelectrolyte - Polymer-flooding produced water
Abstract

Hypothesis: Anion exchange membranes (AEMS) are particularly prone to fouling when employed to desalinate polymer flooding produced water (PFPW), an abundant sub-product from the oil and gas industry. The formation of fouling on an AEM will be affected by the composition of the solution, which includes various dissolved salts, partially hydrolyzed polyacrylamide (HPAM), crude oil, and surfactants. Experiments: Electrodialysis experiments were performed to desalinate feed solutions with different compositions, aiming to distinguish between their individual and combined effects. The solutions contained diverse mono- and divalent ions. The analysis included data collected during the desalination and characterization of the fouled AEMs by diverse analytical techniques. Findings: HPAM produced the most severe effects in terms of visible fouling and increase of resistance. This polyelectrolyte fouls the AEM by adsorbing on its surface and by forming a viscous gel layer that hampers the replenishment of ions from the bulk solution. Ca and Mg have a large influence on the formation of thick HPAM gel layers, while the oily compounds have only a minimal influence acting mainly as a destabilizing agent. The membranes also presented scaling consisting of calcium precipitates. The effects of the gel layer were minimized by applying current reversal and foulant-free solution.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.