Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 558082
Title Molecular characterization of Ecuadorian quinoa (Chenopodium quinoa Willd.) diversity : implications for conservation and breeding
Author(s) Salazar, Juan; Jaramillo Roman, Viviana; Gutierrez, Bernardo; Loo, E.N. van; Lourdes Torres, María de; Torres, Andrés Francisco
Source Euphytica 215 (2019)3. - ISSN 0014-2336
DOI https://doi.org/10.1007/s10681-019-2371-z
Department(s) Plant Breeding
Plant Breeding
EPS
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Breeding - Ecuador - Genetic diversity - Population structure - Quinoa - SSR
Abstract

Quinoa (Chenopodium quinoa Willd.) is recognized as an important crop to improve global food security. It has gained international recognition because of the nutritional value of its seeds and its broad agronomic resilience. Although several studies have attempted to characterize the genetic diversity of quinoa, none have focused on evaluating germplasm from Ecuador; the latter considered a relevant subcenter of diversity for the species. In this study, 84 accessions representing the species’ cultivated range in the Ecuadorian Andes were characterized using 15 species-specific SSR markers. The extent of allelic richness (196 alleles) and genetic heterozygosity (H E = 0.71) detected for these accessions demonstrate that Ecuadorian quinoa is highly diverse. Phenetic analyzes structured Ecuadorian germplasm into 3 subgroups; each containing genotypes from all surveyed provinces. Average expected heterozygosity was high for all 3 subgroups (0.53 ≤ H E ≤ 0.72), and Nei-pairwise comparisons showed significant genetic divergence among them (0.31 ≤ Nei DST ≤ 0.84). The lack of a clear geographic pattern in the genetic structure of Ecuadorian quinoa led us to believe that the 3 reported subgroups constitute independent genetic lineages representing ancestral landrace populations which have been disseminated throughout Ecuador via informal seed networks. Nevertheless, a Wilcoxon test showed that at least one subgroup had been subject to intensive inbreeding and selection; and possibly corresponds to the local commercial variety INIAP-Tunkahuan. Our results show that ancestral quinoa diversity in Ecuador has prevailed despite the introduction of commercial varieties, and should be preserved for future use in breeding programs.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.