Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 558535
Title Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H2S removal from sour gas streams
Author(s) Kiragosyan, Karine; Picard, Magali; Sorokin, Dimitry Y.; Dijkstra, Jelmer; Klok, Johannes B.M.; Roman, Pawel; Janssen, Albert J.H.
Source Journal of Hazardous Materials 386 (2020). - ISSN 0304-3894
Department(s) Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Biodesulfurization - Biosulfur - Dimethyl disulfide - Selective inhibition - Sulfur-oxidizing bacteria

Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.