Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 558587
Title Identification of bioactive phytochemicals in mulberries
Author(s) D’urso, Gilda; Mes, Jurriaan J.; Montoro, Paola; Hall, Robert D.; Vos, Ric C.H. de
Source Metabolites 10 (2020)1. - ISSN 2218-1989
DOI https://doi.org/10.3390/metabo10010007
Department(s) Food, Health & Consumer Research
VLAG
Bioscience
Laboratory of Plant Physiology
BIOS Applied Metabolic Systems
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Antioxidant activity - High resolution mass spectrometry - In vitro gastrointestinal digestion - Mulberry - α-glucosidase inhibitory activity
Abstract

Mulberries are consumed either freshly or as processed fruits and are traditionally used to tackle several diseases, especially type II diabetes. Here, we investigated the metabolite compositions of ripe fruits of both white (Morus alba) and black (Morus nigra) mulberries, using reversed-phase HPLC coupled to high resolution mass spectrometry (LC-MS), and related these to their in vitro antioxidant and α-glucosidase inhibitory activities. Based on accurate masses, fragmentation data, UV/Vis light absorbance spectra and retention times, 35 metabolites, mainly comprising phenolic compounds and amino sugar acids, were identified. While the antioxidant activity was highest in M. nigra, the α-glucosidase inhibitory activities were similar between species. Both bioactivities were mostly resistant to in vitro gastrointestinal digestion. To identify the bioactive compounds, we combined LC-MS with 96-well-format fractionation followed by testing the individual fractions for α-glucosidase inhibition, while compounds responsible for the antioxidant activity were identified using HPLC with an online antioxidant detection system. We thus determined iminosugars and phenolic compounds in both M. alba and M. nigra, and anthocyanins in M. nigra as being the key α-glucosidase inhibitors, while anthocyanins in M. nigra and both phenylpropanoids and flavonols in M. alba were identified as key antioxidants in their ripe berries.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.