Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 558980
Title Asymmetric relationships between proteins shape genome evolution
Author(s) Notebaart, Richard A.; Kensche, Philip R.; Huynen, Martijn A.; Dutilh, Bas E.
Source Genome Biology 10 (2009). - ISSN 1474-7596
Publication type Refereed Article in a scientific journal
Publication year 2009

Background: The relationships between proteins are often asymmetric: one protein (A) depends for its function on another protein (B), but the second protein does not depend on the first. In metabolic networks there are multiple pathways that converge into one central pathway. The enzymes in the converging pathways depend on the enzymes in the central pathway, but the enzymes in the latter do not depend on any specific enzyme in the converging pathways. Asymmetric relations are analogous to the "if->then" logical relation where A implies B, but B does not imply A (A->B). Results: We show that the majority of relationships between enzymes in metabolic flux models of metabolism in Escherichia coli and Saccharomyces cerevisiae are asymmetric. We show furthermore that these asymmetric relationships are reflected in the expression of the genes encoding those enzymes, the effect of gene knockouts and the evolution of genomes. From the asymmetric relative dependency, one would expect that the gene that is relatively independent (B) can occur without the other dependent gene (A), but not the reverse. Indeed, when only one gene of an A->B pair is expressed, is essential, is present in a genome after an evolutionary gain or loss, it tends to be the independent gene (B). This bias is strongest for genes encoding proteins whose asymmetric relationship is evolutionarily conserved. Conclusions: The asymmetric relations between proteins that arise from the system properties of metabolic networks affect gene expression, the relative effect of gene knockouts and genome evolution in a predictable manner.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.