Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 559029
Title SnRK2 protein kinases and mRNA decapping machinery control root development and response to salt
Author(s) Kawa, Dorota; Meyer, A.J.; Dekker, Henk L.; Abd-El-Haliem, Ahmed; Gevaert, Kris; De Slijke, Eveline Van; Maszkowska, Justyna; Bucholc, Maria; Dobrowolska, Grazyna; Jaeger, Geert de; Schuurink, Robert C.; Haring, Michel A.; Testerink, Christa
Source Plant Physiology 182 (2020)1. - ISSN 0032-0889
Department(s) Laboratory of Plant Physiology
Publication type Refereed Article in a scientific journal
Publication year 2020
Abstract SNF1-RELATED PROTEIN KINASES 2 (SnRK2) are important components of early osmotic and salt stress signaling pathways in plants. The Arabidopsis (Arabidopsis thaliana) SnRK2 family comprises the abscisic acid (ABA)-activated protein kinases SnRK2.2, SnRK2.3, SnRK2.6, SnRK2.7, and SnRK2.8, and the ABA-independent subclass 1 protein kinases SnRK2.1, SnRK2.4, SnRK2.5, SnRK2.9, and SnRK2.10. ABA-independent SnRK2s act at the post-transcriptional level via phosphorylation of VARICOSE (VCS), a member of the mRNA decapping complex, that catalyzes the first step of 5'mRNA decay. Here, we identified VCS and VARICOSE RELATED (VCR) as interactors and phosphorylation targets of SnRK2.5, SnRK2.6, and SnRK2.10. All three protein kinases phosphorylated Ser645 and Ser1156 of VCS, while SnRK2.6 and SnRK2.10 also phosphorylated VCS Ser692 and Ser680 of VCR. We showed that subclass 1 SnRK2s, VCS, and 5' EXORIBONUCLEASE 4 (XRN4) are involved in regulating root growth under control conditions as well as modulating root system architecture in response to salt stress. Our results suggest interesting patterns of redundancy within subclass 1 SnRK2 protein kinases, with SnRK2.1, SnRK2.5 and SnRK2.9 controlling root growth under non-stress conditions and SnRK2.4 and SnRK2.10 acting mostly in response to salinity. We propose that subclass 1 SnRK2s function in root development under salt stress by affecting the transcript levels of aquaporins, as well as CYP79B2, an enzyme involved in auxin biosynthesis.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.