Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 559082
Title Identifying Amsterdam's nutrient hotspots: A new method to map human excreta at building and neighborhood scale
Author(s) Wielemaker, Rosanne; Stuiver, John; Zeeman, Grietje; Weijma, Jan
Source Journal of Industrial Ecology (2019). - ISSN 1088-1980
Department(s) Environmental Technology
Laboratory of Geo-information Science and Remote Sensing
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) geographic information system (GIS) - nutrient recycling - phosphorus - resource recovery - urban metabolism - wastewater

Recovering nutrients from human excreta and wastewater has been receiving increasing attention as a means to supplement or replace synthetic fertilizer production. Apart from technologies for nutrient recovery at centralized wastewater treatment plants, numerous decentralized, source-separated sanitation systems, also known as new sanitation systems, have been developed to facilitate recovery. Decision-making for the planning and implementation of new sanitation systems would benefit from a spatially explicit inventory of nutrient hotspots in urban areas. To provide visual representations of nutrient loads, we developed a methodology that combines spatial-temporal modeling with geographic information system analysis, and used it for the city of Amsterdam. The methodology is new in the field of nutrient mapping, especially at the smallest geographical scale: building. Nitrogen, phosphorus, and potassium loads and hotspots are mapped at both building and neighborhood scale, drawing attention to the need for multiple scale analyses in decision-making. This study concludes with a discussion on the potential to further develop the method proposed to include more detailed and verified data and to identify nutrient hotspots that are promising as nutrient recovery sites with new sanitation systems.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.