Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 559346
Title Thermal stability of oxide-supported gold nanoparticles
Author(s) Masoud, Nazila; Partsch, Tomas; Jong, Krijn P. de; Jongh, Petra E. de
Source Gold Bulletin 52 (2019)2. - ISSN 2364-821X - p. 105 - 114.
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Atmosphere effect - Au - Sintering - Support effect

In this study, we report on the influence of support and gas atmosphere on the thermal stability of Au nanoparticles on oxidic supports. All samples were prepared with a modified impregnation method and have initial Au particle sizes in the range of 3–4 nm. We observed that in air, Au nanoparticles on SiO2 and Al2O3 are thermally much more stable than Au nanoparticles on TiO2. For instance, upon treatment up to 700 °C, on SiO2, Au particles grew from 4 to 6 nm while on TiO2 from 3 to 13 nm. For Au nanoparticles on TiO2, growth is accelerated by oxidizing atmospheres and the presence of water and/or chloride. On non-reducible supports and in non-oxidizing atmosphere, the supported Au nanoparticles were remarkably stable. The insight into the growth of oxide-supported Au nanoparticles in reactive atmosphere offers an additional tool for a rational choice of a support for high-temperature gas-phase reactions involving gold nanocatalysts.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.