Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 559366
Title Multi-Tree Decomposition Methods for Large-Scale Mixed Integer Nonlinear Optimization
Author(s) Nowak, I.; Muts, P.; Hendrix, E.M.T.
Source In: Large Scale Optimization in Supply Chains and Smart Manufacturing / Velásquez-Bermúdez, J.M., Khakifirooz, M., Fathi, M., Springer (Springer Optimization and Its Application ) - ISBN 9783030227876 - p. 27 - 58.
DOI https://doi.org/10.1007/978-3-030-22788-3_2
Department(s) Operations Research and Logistics
WASS
Publication type Peer reviewed book chapter
Publication year 2019
Abstract Most industrial optimization problems are sparse and can be formulated as block-separable mixed-integer nonlinear programming (MINLP) problems, defined by linking low-dimensional sub-problems by (linear) coupling constraints. Decomposition methods solve a block-separable MINLP by alternately solving master problems and sub-problems. In practice, decomposition methods are sometimes the only possibility to compute high-quality solutions of large-scale optimization problems. However, efficient implementations may require expert knowledge and problem-specific features. Recently, there is renewed interest in making these methods accessible to general users by developing generic decomposition frameworks and modelling support. The focus of this chapter is on so-called multi-tree decomposition methods, which iteratively approximate the feasible area without using a single (global) branch-and-bound tree, i.e. branch-and-bound is only used for solving sub-problems. After an introduction, we describe first outer approximation (OA) decomposition methods, including the adaptive, multivariate partitioning (AMP) and the novel decomposition-based outer approximation (DECOA) algorithm . This is followed by a description of multi-tree methods using a reduced master problem for solving large-scale industrial optimization problems. The first method to be described applies parallel column generation (CG) and iterative fixing for solving nonconvex transport optimization problems with several hundred millions of variables and constraints. The second method is based on a novel approach combining CG and compact outer approximation. The last methodology to be discussed is the general Benders decomposition method for globally solving large nonconvex stochastic programs using a reduced mixed-integer programming (MIP) master problem.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.