Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 559581
Title Shifts in national land use and food production in Great Britain after a climate tipping point
Author(s) Ritchie, Paul D.L.; Smith, Greg S.; Davis, Katrina J.; Fezzi, Carlo; Halleck-Vega, Solmaria; Harper, Anna B.; Boulton, Chris A.; Binner, Amy R.; Day, Brett H.; Gallego-Sala, Angela V.; Mecking, Jennifer V.; Sitch, Stephen A.; Lenton, Timothy M.; Bateman, Ian J.
Source Nature Food 1 (2020)1. - ISSN 2662-1355 - p. 76 - 83.
DOI https://doi.org/10.1038/s43016-019-0011-3
Department(s) Urban Economics
Publication type Refereed Article in a scientific journal
Publication year 2020
Abstract Climate change is expected to impact agricultural land use. Steadily accumulating changes in temperature and water availability can alter the relative profitability of different farming activities and promote land-use changes. There is also potential for high-impact ‘climate tipping points’, where abrupt, nonlinear change in climate occurs, such as the potential collapse of the Atlantic Meridional Overturning Circulation (AMOC). Here, using data from Great Britain, we develop a methodology to analyse the impacts of a climate tipping point on land use and economic outcomes for agriculture. We show that economic and land-use impacts of such a tipping point are likely to include widespread cessation of arable farming with losses of agricultural output that are an order of magnitude larger than the impacts of climate change without an AMOC collapse. The agricultural effects of AMOC collapse could be ameliorated by technological adaptations such as widespread irrigation, but the amount of water required and the costs appear to be prohibitive in this instance.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.