Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 559802
Title Second order virial coefficients from phase diagrams
Author(s) Dewi, B.P.C.; Linden, E. van der; Bot, Arjen; Venema, P.
Source Food Hydrocolloids 101 (2020). - ISSN 0268-005X - 16 p.
DOI https://doi.org/10.1016/j.foodhyd.2019.105546
Department(s) Physics and Physical Chemistry of Foods
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) critical point - Phase diagram - second virial coefficient
Abstract The prediction of phase separation is essential to understand and control the properties of food systems. In this work, an existing theoretical model for describing phase separation between binary mixtures of hydrocolloids, using a virial approach up to second order, is extended with several new analytical expressions. These new expressions allow one to determine the three virial coefficients directly from three characteristics of the phase diagram, where the critical point plays a pivotal role and allows one to predict the complete phase diagram. The advantage of this approach is that experimental techniques, like membrane osmometry or static light scattering, to directly measure virial coefficients can be, in principle, avoided. It was found that just the location of the critical point is sufficient to determine two of the three virial coefficients, when one of the virial coefficients is known. When, in addition to the critical point, one other characteristic of the phase diagram is known with sufficient accuracy, like the slope of the tie-lines near or far away from the critical point, all three virial coefficients can be determined from the phase diagram. Using this approach, three virial coefficients for aqueous mixtures of dextran and polyethylene oxide were determined and compared to the ones obtained from membrane osmometry.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.