Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 560035
Title Morphological and physiological responses of the potato stem transport tissues to dehydration stress
Author(s) Aliche, Ernest B.; Prusova-Bourke, Alena; Ruiz-Sanchez, Mariam; Oortwijn, Marian; Gerkema, Edo; As, Henk Van; Visser, Richard G.F.; Linden, C.G. van der
Source Planta 251 (2020)2. - ISSN 0032-0935
DOI https://doi.org/10.1007/s00425-019-03336-7
Department(s) Plant Breeding
Biophysics
EPS
VLAG
PE&RC
Plant Breeding
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Drought - MRI - Phloem - Potato - Sugar transport - Xylem
Abstract

Main conclusion: Adaptation of the xylem under dehydration to smaller sized vessels and the increase in xylem density per stem area facilitate water transport during water-limiting conditions, and this has implications for assimilate transport during drought. Abstract: The potato stem is the communication and transport channel between the assimilate-exporting source leaves and the terminal sink tissues of the plant. During environmental stress conditions like water scarcity, which adversely affect the performance (canopy growth and tuber yield) of the potato plant, the response of stem tissues is essential, however, still understudied. In this study, we investigated the response of the stem tissues of cultivated potato grown in the greenhouse to dehydration using a multidisciplinary approach including physiological, biochemical, morphological, microscopic, and magnetic resonance imaging techniques. We observed the most significant effects of water limitation in the lower stem regions of plants. The light microscopy analysis of the potato stem sections revealed that plants exposed to this particular dehydration stress have higher total xylem density per unit area than control plants. This increase in the total xylem density was accompanied by an increase in the number of narrow-diameter xylem vessels and a decrease in the number of large-diameter xylem vessels. Our MRI approach revealed a diurnal rhythm of xylem flux between day and night, with a reduction in xylem flux that is linked to dehydration sensitivity. We also observed that sink strength was the main driver of assimilate transport through the stem in our data set. These findings may present potential breeding targets for drought tolerance in potato.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.