Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 560241
Title Mechanical behaviour of hemp fibre composites in relation to their microstructure by micro strain mapping, computed tomography, and biochemical analysis
Author(s) Fuentes, C.A.; Willekens, P.; Petit, J.; Witters, J.; Ruan, Y.; Müssig, J.; Trindade, L.M.; Vuure, A.W. van
Source In: ECCM 2018 - 18th European Conference on Composite Materials. - Applied Mechanics Laboratory - ISBN 9781510896932
Event 18th European Conference on Composite Materials, ECCM 2018, Athens, 2018-06-24/2018-06-28
Department(s) Cell Biology and Immunology
Plant Breeding
EPS
Publication type Contribution in proceedings
Publication year 2019
Keyword(s) Hemp fibres - Natural fibre composites - Strain mapping - Tomography
Abstract

This manuscript describes the effects of alterations in biochemical composition on structural morphology and the mechanical behaviour of elementary and technical fibres of hemp used for composite applications. First, the strength and apparent Young's modulus distribution of technical fibres of hemp of 96 hemp samples, corresponding to 32 different hemp accessions cultivated in 3 locations, were analysed using Weibull distribution. From these, 2 samples (one with high and one with low fibre strength) were selected for further analysis. Next, full-field strain measurement at the micro-scale during tensile loading was used for evaluating both, the stress-strain behaviour at a global scale and the local mechanical behaviour heterogeneity at a micro-scale, along elementary and technical fibres of hemp. At the composite level, the local behaviour of each phase of the composite (fibre and matrix) and of the fibre/matrix interphase during a transversal 3 point bending test were characterized. Results show that the strength of technical fibres of hemp is highly dependent on the shear strength between elementary fibres, which itself is related to the biochemical composition of the middle lamellae. A correlation between the strength of a technical fibre and their elementary fibres was also observed. At the composite level, the relation of the composite mechanical behaviour (Young's modulus and strength) with the technical or elementary fibre mechanical behaviour is complex and might depend on the combination of multiple factors such as the matrix (thermoset or thermoplastic), or the technical fibre sample employed (weak or strong) and the level of fibre-matrix wetting (impregnation) and adhesion.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.