Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 560545
Title Semantically Interpretable Activation Maps: what-where-how explanations within CNNs
Author(s) Marcos Gonzalez, D.; Lobry, Sylvain; Tuia, D.
Source arXiv - 9 p.
Department(s) Laboratory of Geo-information Science and Remote Sensing
PE&RC
Publication type Working paper aimed at scientific audience
Publication year 2019
Abstract A main issue preventing the use of Convolutional Neural Networks (CNN) in end user applications is the low level of transparency in the decision process. Previous work on CNN interpretability has mostly focused either on localizing the regions of the image that contribute to the result or on building an external model that generates plausible explanations. However, the former does not provide any semantic information and the latter does not guarantee the faithfulness of the explanation. We propose an intermediate representation composed of multiple Semantically Interpretable Activation Maps (SIAM) indicating the presence of predefined attributes at different locations of the image. These attribute maps are then linearly combined to produce the final output. This gives the user insight into what the model has seen, where, and a final output directly linked to this information in a comprehensive and interpretable way. We test the method on the task of landscape scenicness (aesthetic value) estimation, using an intermediate representation of 33 attributes from the SUN Attributes database. The results confirm that SIAM makes it possible to understand what attributes in the image are contributing to the final score and where they are located. Since it is based on learning from multiple tasks and datasets, SIAM improve the explanability of the prediction without additional annotation efforts or computational overhead at inference time, while keeping good performances on both the final and intermediate tasks.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.