Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 560656
Title Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant
Author(s) Piai, Laura; Blokland, Marco; Wal, Albert van der; Langenhoff, Alette
Source Journal of Hazardous Materials 388 (2020). - ISSN 0304-3894
DOI https://doi.org/10.1016/j.jhazmat.2020.122028
Department(s) Environmental Technology
BU Veterinary Drugs
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Activated carbon bioregeneration - Contaminants of emerging concern - Micropollutants removal - Temperature effect - Water treatment
Abstract

The presence of micropollutants in surface water is a potential threat for the production of high quality and safe drinking water. Adsorption of micropollutants onto granular activated carbon (GAC) in fixed-bed filters is often applied as a polishing step in the production of drinking water. Activated carbon can act as a carrier material for biofilm, hence biodegradation can be an additional removal mechanism for micropollutants in GAC filters. To assess the potential of biofilm to biodegrade micropollutants, it is necessary to distinguish adsorption from biodegradation as a removal mechanism. We performed experiments at 5 °C and 20 °C with biologically active and autoclaved GAC to assess the biodegradation of micropollutants by the biofilm grown on the GAC surface. Ten micropollutants were selected as model compounds. Three of them, iopromide, iopamidol and metformin, were biodegraded by the GAC biofilm. Additionally, we observed that temperature can increase or decrease adsorption, depending on the micropollutant studied. Finally, we compared the adsorption capacity of GAC used for more than 100,000 bed volumes and fresh GAC. We demonstrated that used GAC shows a higher adsorption capacity for guanylurea, metformin and hexamethylenetetramine and only a limited reduction in adsorption capacity for diclofenac and benzotriazole compared to fresh GAC.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.