Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 560658
Title Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station
Author(s) Xu, Donghao; Carswell, Alison; Zhu, Qichao; Zhang, Fusuo; Vries, Wim de
Source Science of the Total Environment 713 (2020). - ISSN 0048-9697
DOI https://doi.org/10.1016/j.scitotenv.2019.136249
Department(s) Sustainable Soil Use
WIMEK
Environmental Systems Analysis
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Liming - Long-term experiments - Modelling - Soil acidification - VSD+
Abstract

Liming is widely used to reduce the impacts of soil acidification and optimize soil pH for agricultural production. Whether models can simulate the effect of liming on soil pH, and base saturation (BS), and thereby guide lime application, is still largely unknown. Long-term experimental data from a grassland (Park Grass, 1965–2012) and arable land (Sawyers Field, 1962–1972) at Rothamsted Research, UK, were thus used to assess the ability of the VSD+ model to simulate the effects of long-term fertilization and liming on soil acidification. The VSD+ model was capable of simulating observed soil pH and BS changes over time in the long-term liming experiments, except for a treatment in which sulphur (S) was added. Normalized Mean Absolute Errors (NMAE) and Normalized Root Mean Square Errors (NRMSE) of simulated and observed pH values, averaged over the observation periods varied between 0.02 and 0.08 (NMAE) and 0.01–0.05 (NRMSE). The acidity budget results for Park Grass suggest that nitrogen (N) transformations contributed most to acidity production, causing predominantly aluminium (Al) exchange in the topsoil (0–23 cm) followed by base cation (BC) release, but in the treatment with S addition, BC uptake had a nearly similar effect on acidity production. However, in Sawyers Field, the acidity budget suggested that BC uptake was the dominant cause of soil acidification, while the impacts of N transformations were limited. Liming was found to sufficiently replenish BC and decrease Al exchange in the topsoil layer. Overall, the VSD+ model can adequately reconstruct the impacts of fertilizer and liming applications on acid neutralizing processes and related soil pH and BC changes at the soil exchange complex.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.