Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561103
Title Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar
Author(s) Huang, Yifan; Gao, Minling; Deng, Yingxuan; Khan, Zulqarnain Haider; Liu, Xuewei; Song, Zhengguo; Qiu, Weiwen
Source Science of the Total Environment 715 (2020). - ISSN 0048-9697
Department(s) Soil Chemistry and Chemical Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Aadsorption - Bbiochar - Fferrihydrite - Iinorganic arsenic - Mmechanism - Ooxidation

The by-product of the traditional Fenton reaction, colloidal arsenic-‑iron oxide, is migratable and may cause secondary environmental pollution. This paper reported a new strategy involving oxidizing and immobilizing inorganic arsenic using the Fenton reaction, and avoiding the risk of secondary contamination. Lab synthesized ferrihydrite-loaded biochar (FhBC) was developed for oxidizing and binding As(III) and As(V) in aqueous solution. Batch experiments and a series of spectrum analysis (e.g., X-ray photoelectron spectroscopy [XPS], electron paramagnetic resonance [EPR], and Fourier transform infrared spectroscopy [FTIR]) were conducted to study the oxidizing or adsorption capacity and mechanism. The maximum adsorption capacity of FhBC for As(III) and As(V) is 1.315 and 1.325 mmol/g, respectively. In addition, FhBC has an efficient oxidizing capacity within a wide pH range, which is because biochar promotes the Fenton reaction by acting as an electron donator, electron shuttler, or by providing persistent free radicals. Moreover, the adsorption mechanism was studied by FTIR spectroscopy, XPS, and X-ray diffraction (XRD). The formation of internal spherical complexes and iron oxides with a higher degree of crystallization was observed, which indicate that the products of adsorption are stable and robust in a complex environment and can exist in a highly crystallized form after adsorbing arsenic ions. Therefore, the use of FhBC as an adsorbent for arsenic represents a new strategy of using the Fenton reaction while reducing secondary contamination. These results may contribute to further mechanistic studies or extensive practical applications of FhBC.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.