Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561121
Title Linking vegetation and soil functions during secondary forest succession in the Atlantic forest
Author(s) Teixeira, Heitor Mancini; Cardoso, Irene Maria; Bianchi, Felix J.J.A.; Cruz Silva, Arthur da; Jamme, Delphin; Peña-Claros, Marielos
Source Forest Ecology and Management 457 (2020). - ISSN 0378-1127
DOI https://doi.org/10.1016/j.foreco.2019.117696
Department(s) Farming Systems Ecology
PE&RC
Forest Ecology and Forest Management
Publication type Refereed Article in a scientific journal
Publication year 2020
Abstract Secondary forest succession can be an effective and low-cost strategy to increase forest cover and the associated biodiversity and soil functions. However, little is known about how soil functions develop during succession, and how vegetation attributes influence soil functions, especially in highly biodiverse and fragmented landscapes in the tropics. Here we assessed a wide range of indicators of taxonomic (e.g. number of tree species), structural (e.g. basal area, canopy openness) and functional diversity (e.g. community weighted means of functional traits) of tree species, as well as indicators for soil functions related to soil organic matter accumulation, nutrient cycling and soil cover in secondary forest patches ranging from 5 to 80 years. Two recently abandoned agricultural fields were included as the starting point of forest succession and two primary forest patches served as references for the end point of forest succession. Four ecological hypotheses, centred around the role of functional diversity, structural diversity and biomass, were tested to explore mechanisms in which forest vegetation may influence soil functions. Most measures of structural, taxonomic and functional diversity converged to values found in primary forests after 25–50 years of succession, whereas functional composition changed from acquisitive to conservative species. Soil carbon and nutrient cycling showed a quick recovery to the levels of primary forests after 15 years of succession. Although soil cover also increased during succession, levels of primary forests were not reached within 80 years. Variation in tree height and trait dominance were identified as aboveground drivers of carbon and nutrient cycling, while aboveground biomass was the main driver of litter accumulation, and the associated soil cover and water retention. Our results indicate that secondary forest succession can lead to a relative fast recovery of nutrient and carbon cycling functions, but not of soil cover. Our findings highlight the essential role of secondary forests in providing multiple ecosystem services. These results can be used to inform management and reforestation programmes targeted at strengthening soil functions, such as soil cover, nutrient and carbon cycling.

Previou
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.