Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561213
Title Toxic effects of increased sediment nutrient and organic matter loading on the seagrass zostera noltii
Author(s) Govers, Laura L.; Brouwer, Jan H.F. de; Suykerbuyk, Wouter; Bouma, Tjeerd J.; Lamers, Leon P.M.; Smolders, Alfons J.P.; Katwijk, Marieke M. van
Source Aquatic Toxicology 155 (2014). - ISSN 0166-445X - p. 253 - 260.
DOI https://doi.org/10.1016/j.aquatox.2014.07.005
Department(s) Animal Ecology
Juridische Zaken & Tender Support Unit
Publication type Refereed Article in a scientific journal
Publication year 2014
Keyword(s) Eutrophication - Joint detoxification - Nutrient - Organic matter - Sulfide toxicity
Abstract

As a result of anthropogenic disturbances and natural stressors, seagrass beds are often patchy and heterogeneous. The effects of high loads of nutrients and organic matter in patch development and expansion in heterogeneous seagrass beds have, however, poorly been studied. We experimentally assessed the in situ effects of sediment quality on seagrass (Zostera noltii) patch dynamics by studying patch (0.35m diameter) development and expansion for 4 sediment treatments: control, nutrient addition (NPK), organic matter addition (OM) and a combination (NPK+OM). OM addition strongly increased porewater sulfide concentrations whereas NPK increased porewater ammonium, nitrate and phosphate concentrations. As high nitrate concentrations suppressed sulfide production in NPK+OM, this treatment was biogeochemically comparable to NPK. Sulfide and ammonium concentrations differed within treatments, but over a 77 days period, seagrass patch survival and expansion were impaired by all additions compared to the control treatment. Expansion decreased at porewater ammonium concentrations >2000μmolL-1. Mother patch biomass was not affected by high porewater ammonium concentrations as a result of its detoxification by higher seagrass densities. Sulfide concentrations >1000μmolL-1 were toxic to both patch expansion and mother patch. We conclude that patch survival and expansion are constrained at high loads of nutrients or organic matter as a result of porewater ammonium or sulfide toxicity.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.