Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561229
Title Impact of flight altitude and cover orientation on Digital Surface Model (DSM) accuracy for flood damage assessment in Murcia (Spain) using a fixed-wing UAV
Author(s) Anders, Niels; Smith, Mike; Suomalainen, Juha; Cammeraat, Erik; Valente, João; Keesstra, Saskia
Source Earth Science Informatics (2020). - ISSN 1865-0473
DOI https://doi.org/10.1007/s12145-019-00427-7
Department(s) Information Technology
WASS
Soil, Water and Land Use
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) DSM assessment - Fixed-wings - Geomorphology - Low-altitude aerial photography - Remote sensing - Soil erosion - UAV
Abstract

Soil erosion, rapid geomorphological change and vegetation degradation are major threats to the human and natural environment. Unmanned Aerial Systems (UAS) can be used as tools to provide detailed and accurate estimations of landscape change. The effect of flight strategy on the accuracy of UAS image data products, typically a digital surface model (DSM) and orthophoto, is unknown. Herein different flying altitudes (126-235 m) and area coverage orientations (N-S and SW-NE) are assessed in a semi-arid and medium-relief area where terraced and abandoned agricultural fields are heavily damaged by piping and gully erosion. The assessment was with respect to cell size, vertical and horizontal accuracy, absolute difference of DSM, and registration of recognizable landscape features. The results show increasing cell size (5-9 cm) with increasing altitude, and differences between elevation values (10-20 cm) for different flight directions. Vertical accuracy ranged 4-7 cm but showed no clear relationship with flight strategy, whilst horizontal error was stable (2-4 cm) for the different orthophotos. In all data sets, geomorphological features such as piping channels, rills and gullies and vegetation patches could be labeled by a technician. Finally, the datasets have been released in a public repository.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.