Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561375
Title Investigation on food packaging polymers: Effects on vegetable oil oxidation
Author(s) Hu, Keqing; Huyan, Zongyao; Ding, Shaoxuan; Dong, Yaoyao; Yu, Xiuzhu
Source Food Chemistry 315 (2020). - ISSN 0308-8146
Department(s) Food Quality and Design
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Contact angles - Packaging polymer - Vegetable oil oxidation - Volatile compounds

Polyethylene (PE), polypropylene (PP), polyamide (PA), and polyethylene terephthalate (PET) surfaces and particles were employed to study effects of polymer materials on linseed oil, peanut oil, rapeseed oil and sunflower seed oil oxidation. The surface types of the materials, hydroperoxide content and volatile in oils were determined by contact angle, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Oils on PP surfaces underwent a more rapid oxidation, followed by PA, PE and PET. Except PP sets, this order was consistent with surface hydrophilicity of polymers. Further study using polymer particles avoiding packaging barrier suggested this was probably due to barrier factors. Although PE surfaces allowed oil to have lower content of hydroperoxides, it can promote oil hydroperoxide decomposition into volatile products. Surface types of polymer materials are correlated with oxidation of contacted oil, and these surfaces can also affect the oil secondary oxidation and the degradation of oxidation products.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.