Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561498
Title Lanthanum modified bentonite behaviour and efficiency in adsorbing phosphate in saline waters
Author(s) Mucci, Maíra; Douglas, Grant; Lürling, Miquel
Source Chemosphere 249 (2020). - ISSN 0045-6535
Department(s) Aquatic Ecology and Water Quality Management
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Eutrophication - Geo-engineering - Lake restoration - Phoslock - Phosphorus control - Salinity

Lanthanum-modified bentonite (LMB, commercially called Phoslock®) has been widely applied in freshwater systems to manage eutrophication. Little is known, however, about its behaviour and efficiency in binding filterable reactive phosphorus (FRP) in saline environments. We assessed if LMB would adsorb phosphate over a range of salinities (0–32 ppth) comparing the behaviour in seawater salts and equivalent concentrations of NaCl. Lanthanum release from the bentonite matrix was measured and the La species prevailing in saline environments were evaluated through chemical equilibrium modelling. We demonstrated that LMB was able to adsorb FRP in all the salinities tested. Filterable lanthanum (FLa) concentrations were similarly low (<5 μgL−1) at all seawater salinities but considerably elevated, on occasion >2000 times greater in equivalent NaCl salinities. Mineralogical analysis indicates that La present in the clay interlayer was (partially) replaced by Na/Ca/Mg present in the seawater and a possible secondary P-reactive phase was formed, such as kozoite (LaCO3OH) or lanthanite (La2(CO3)3·8H2O) that may be physically dissociated from the LMB. Geochemical modelling also indicates that most FLa dissociated from LMB would be precipitated as a carbonate complex. In light of the identification of reactive intermediate phases, further studies including ecotoxicologial assays are required to assess any deleterious effects from the application of LMB to saline waters.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.