Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561591
Title Warming and CO2 effects under oligotrophication on temperate phytoplankton communities
Author(s) Cabrerizo, Marco J.; Álvarez-Manzaneda, Inmaculada M.; León-Palmero, Elizabeth; Guerrero-Jiménez, Gerardo; Senerpont Domis, Lisette N. de; Teurlincx, Sven; González-Olalla, Juan M.
Source Water Research 173 (2020). - ISSN 0043-1354
DOI https://doi.org/10.1016/j.watres.2020.115579
Department(s) Aquatic Ecology and Water Quality Management
Publication type Refereed Article in a scientific journal
Publication year 2020
Keyword(s) Cyanobacteria - Eukaryotes - Global change - Photosynthesis - Resource use efficiency - Shallow lakes
Abstract

Eutrophication, global warming, and rising carbon dioxide (CO2) levels are the three most prevalent pressures impacting the biosphere. Despite their individual effects are well-known, it remains untested how oligotrophication (i.e. nutrients reduction) can alter the planktonic community responses to warming and elevated CO2 levels. Here, we performed an indoor mesocosm experiment to investigate the warming × CO2 interaction under a nutrient reduction scenario (40%) mediated by an in-lake management strategy (i.e. addition of a commercial solid-phase phosphorus sorbent -Phoslock®) on a natural freshwater plankton community. Biomass production increased under warming × CO2 relative to present-day conditions; however, a Phoslock®-mediated oligotrophication reduced such values by 30–70%. Conversely, the warming × CO2 × oligotrophication interaction stimulated the photosynthesis by 20% compared to ambient nutrient conditions, and matched with higher resource use efficiency (RUE) and nutrient demand. Surprisingly, at a group level, we found that the multi-stressors scenario increased the photosynthesis in eukaryotes by 25%, but greatly impaired in cyanobacteria (ca. −25%). This higher cyanobacterial sensitivity was coupled with a reduced light harvesting efficiency and compensation point. Since Phoslock®-induced oligotrophication unmasked a strong negative warming × CO2 effect on cyanobacteria, it becomes crucial to understand how the interplay between climate change and nutrient abatement actions may alter the, ecosystems functioning. With an integrative understanding of these processes, policy makers will design more appropriate management strategies to improve the ecological status of aquatic ecosystems without compromising their ecological attributes and functioning.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.