Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561685
Title Pareto-optimal design and assessment of monolithic sponges as catalyst carriers for exothermic reactions
Author(s) Kiewidt, Lars; Thöming, Jorg
Source Chemical Engineering Journal 359 (2019). - ISSN 1385-8947 - p. 496 - 504.
DOI https://doi.org/10.1016/j.cej.2018.11.109
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Monolithic catalyst - Multi-objective optimization - Open-cell foam - Pareto-optimal - Solid sponge - Tradeoffs
Abstract

Monolithic sponges combine low pressure losses and excellent heat transport properties and are consequently considered as promising catalyst carriers for fixed-bed reactors. Insights on how to design porosity and window size of monolithic sponges to resolve conflicting relations between low pressure losses, high thermal conductivities, and high space-time-yields (STY), i.e., a high catalyst inventory, are still unknown, especially at pilot or production scales. This study quantifies the outlined tradeoffs and assesses the potential of monolithic sponges as catalyst carriers compared to conventional packed beds of pellets. A state-of-the-art heterogeneous reactor model was applied in combination with a genetic multi-objective optimization algorithm to predict Pareto-optimal sets of sponge designs (max. STY, min. Δp,ΔTmax⩽ΔTtol). As example, the methanation of CO2 was chosen. The Pareto-optimal set of sponge designs shows that small windows are necessary to obtain high space-time-yields comparable to the ones of conventional packed beds. As a consequence, the expected low pressure loss cannot be achieved. Because of excellent heat transport properties, which are weakly dependent on the throughput, monolithic sponges however allow stable operation under varying gas loads. The results demonstrate that monolithic sponges will probably not replace packed pellet beds of pellets for the steady-state production of chemicals. Instead, they provide a competitive option for small-scale, decentralized production for example within chemical energy storage and CO2 utilization.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.