Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561688
Title 3D characterization of gas phase reactors with regularly and irregularly structured monolithic catalysts by NMR imaging and modeling
Author(s) Ulpts, Jürgen; Kiewidt, Lars; Dreher, Wolfgang; Thöming, Jorg
Source Catalysis today 310 (2018). - ISSN 0920-5861 - p. 176 - 186.
DOI https://doi.org/10.1016/j.cattod.2017.05.009
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Gas phase reaction - In-operando - Magnetic resonance - Reactor simulation - Regularly and irregularly structured monolithic catalysts - Temperature measurements
Abstract

A heterogeneously catalyzed gas phase reaction process was characterized regarding temperature and concentration profiles by means of three dimensional (3D) 1H magnetic resonance spectroscopic imaging (MRSI), using the exothermal ethylene hydrogenation as an example. Here, temperature mapping was achieved by using specifically designed thermometers filled with ethylene glycol. The impact of heat and mass transfer on the process performance was investigated by using two different monolithic catalysts with completely different heat and mass transfer characteristics: a regularly structured honeycomb monolith and a irregularly structured open-cell foam packing. The influence of these characteristics on the reaction zones within the monolithic catalysts was demonstrated by simulations that were based on 2D reactor models. To evaluate the applicability of temperature and concentration mapping by 1H MRSI for model validation, a predictive two dimensional model of the process was applied. The resulting simulations of temperature profiles and concentration distributions were in very good agreement with the experimental data with deviations below 9%. Conventional mass spectroscopic measurements provided further evidence of the accuracy of 3D MRSI measurements as well as the 2D reactor model.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.