Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 561689
Title In situ analysis of gas phase reaction processes within monolithic catalyst supports by applying NMR imaging methods
Author(s) Ulpts, Jürgen; Dreher, Wolfgang; Kiewidt, Lars; Schubert, Miriam; Thöming, Jorg
Source Catalysis today 273 (2016). - ISSN 0920-5861 - p. 91 - 98.
DOI https://doi.org/10.1016/j.cattod.2016.02.062
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) 3D magnetic resonance spectroscopic imaging - Catalytic monolith - Gas phase reaction - Non-invasive concentration measurement
Abstract

Measuring spatially resolved concentration distributions in gas phase reaction systems is an important tool to validate simulation calculations, improve the understanding of transport processes within the catalyst, and identify potentials for improvements of monolithic catalyst supports. The commonly used measurement methods for such opaque systems are invasive and, thus, might be misleading due to alteration of the system. To overcome this issue, a 3D magnetic resonance spectroscopic imaging (MRSI) method was developed and implemented on a 7-Tesla NMR imaging system to map the concentration distributions within opaque monolithic catalysts using the ethylene hydrogenation process as case study. The reaction was catalyzed by a coated sponge packing or a honeycomb monolith within an NMR compatible packed bed reactor. Temperatures at the inlet and the outlet of the catalyst beds were simultaneously determined by analyzing the spectra of inserted ethylene glycol filled glass capsules. Steady state concentration profiles and temperature levels were measured at different reaction conditions. In order to prove the plausibility of the measured spatial distributions of compound concentrations, the experimental results were compared to a 1D model of the reactor based on kinetic data from literature. Furthermore, a comparison with integral concentration measurements using a mass spectrometer demonstrated deviations below 5%. The results show that 3D MRSI is a valuable and reliable tool to non-invasively measure spatially resolved process parameters within optically and/or mechanically inaccessible structured monolithic catalyst supports, even if only standard thermal polarization is exploited and the use of expensive and technically challenging signal enhancement techniques (hyperpolarization) is avoided. We expect that 3D MRSI can pave the way toward deeper insight into the interactions between catalyst, catalyst support, and gas phase.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.